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Abstract. We calculate the tunnelling current and the differential conductivity of a 
thi& square barrier in a tianweme magnetic field This field has the same extension 
BS the barrier. We investigate the role of the quasi-lcvels localized at the barrier and 
appearing when the barrier is sufficiently wide. We choose the parameters suitable 
to describe low barriers in semiconductor het-tructures. The tunnelling merit 
and the diffemntial conductivity CM exhibit steps in the applied voltages and Fermi 
ledS. 

1. Introduct ion 

In a previous work [l], we have calculated the transmission coefficient for the tun- 
nelling in a magnetic field confined within a thick square barrier. We assumed this 
barrier to separate two reservoires of electrons. A tunnelling current arises when a 
voltage is applied across the barrier. Our model can be considered an idealization 
of a real device in which the electrodes act as a source and a detector of the co- 
herent quantum tunnelling acros  the barrier. In other words, we assumed that the 
transport within very long electrodes is governed by the Boltzmann equation, so that 
here the magnetic field only contributes to the overall electron mobility, i.e., semi- 
classically. On the other hand, the transport across the barrier is described by the 
Schrodinger equation for one particle. We think that this picture is physically mean- 
ingful provided the phase coherence length is comparable to the barrier width (see [9] 
pp 1013-5). 

Moreover, we assumed the mobility in the electrodes to be so large that the behav- 
iour of the device is dominated overwhelmingly by the conductivity in the small region 
of the barrier. We evaluate this conductivity within the standard transfer Hamiltonian 
formalism which requires the knowledge of the transmission coefficient 1. The inclu- 
sion of phase-breaking processes in the trasmission coefficient is an open question, an 
object of current research in the field [12, 131. We ignore the phase breaking here but 
we try to take into account the mobiIity jump forcing the wavefunctions to be plane 
waves outside the barrier, i.e. we push to zero both the electric and the magnetic 
field outside it. This is a very crude way of describing the wiping out of quantum 
interference patterns but it guarantees that the particle fluxes entering and exiting 
the barrier are spatially uniform. At  the same time, this approximation allows us to 
compute t using elementary quantum mechanics. 
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In this paper we present a discussion of the conductivity in this system, both in two 
and three dimensions. The most striking consequence of the presence of a magnetic 
field within a barrier is the appearance of resonant states localized in the barrier. The 
transmission coefficient 1 depends on k and kx ,  where k is the wave vector in the plane 
perpendicular to the magnetic field and k, is its component parallel to the barrier. 
The z,y,z coordinates can be separated in the Landau gauge. The motion along 
the y axis can be described by an effective potential parametrized by k,. There is a 
particular value of k,, i.e. k,, for which the barrier deformation due to the magnetic 
field produces a parabolic well, superimposed on the barrier, that is symmetric around 
its centre. At this value of k x ,  it may happen that the transmission coefficient becomes 
unity at various values of k2 which, in the case of a thick enough barrier, are very 
close to the corresponding harmonic oscillator levels of the non-truncated parabola (the 
Landau levels). When we move k, away from k,, the minimum of the parabolic well 
leaves the centre of the barrier and approaches its left or right edge. Correspondingly, 
the transmission falls down and the resonances disappear. 

Therefore, only electrons moving in a particular direction in the ( z ,  y) plane, fixed 
by k,, traverse the barrier with probability one; these are the electrons whose energy 
is that of the Landau quasi-levels. When these kinematies conditions are not satisfied, 
the barrier becomes opaque: that is, a sort of conduction channels are formed. This 
behaviour resembles that of a two-dimensional electron gas in an external potential 
which has a saddle-shaped bottleneck. Using the Landauer formula for conductance 
[Z], Buttiker [3] has  shown that this constriction gives rise to ~a~quantization of con- 
ductance. His analysis of a simple harmonic saddle point, based on that of IIalperin 
and Fertig [4], indicates that as the energy of the electrons impinging on the barrier 
increases, the conductance increases by steps of height e 2 / h .  Moreover, a uniform 
magnetic field perpendicular t.o tbe plane causes a flattening and sharpening of these 
steps. There, the lateral constriction is the origin of the quantized transmission and 
attention is focused on the accuracy of the quantization. The smooth variation of the 
distance between the walls gives exponentially small corrections to the transmission 
[5,6]; it has a negligible effect on quantization, while the magnetic field improves the 
quantization. Our model is, in some sense, complementary to Buttiker’s model. We 
do not have any lateral constriction and the steps in the conductivity arise from the 
resonances induced by the confined magnetic field. 

Starting from the expression of the current in terms o f t ,  we calculate the differ- 
ential conductivity as a function of the Fermi level EF of the reservoir. When EF is 
close to the energy of a Landau quasi-level, a new ‘channel’ opens and the conduc- 
tivity exhibits a sudden growth. We have to work with conductivity and not with 
conductance, because we deal with a ‘constriction’ of a different origin. I t  is due to 
the magnetic field; in our system, the scattering retains its two-dimensional nature 
and it is not reducible to one-dimensional scattering, as it is in Buttiker’s case. 

We study the system both in three and two dimensions. In the three-dimensional 
case, the integration over k, (along the magnetic field) smooths the steps that are bet- 
ter pronounced in the two-dimensional case, that is when the electron gas is confined 
in a plane perpendicular to the magnetic field. 

A closer analysis shows that the maxima of t lie along some lines in the ( k ,  k x )  
plane, contained in the domain in which t > 0 . These lines are born and die on 
the border of this domain. As k increases, a resonance appears at k = k,; it reaches 
its maximum (1 = 1) when k = k, and disappears at k = kl, with k ,  > k, > k,. 
When the voltage V polarizing the barrier is increased, the depth of the parabolic 
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well within the barrier increases as well. Naively, one could expect better-pronounced 
effects. However, t, decreases at larger voltages and k, increases. Therefore, at a large 
polarization and gradually increasing t ,  a new resonance appears before the former 
one has run out. The effects of the resonances on the conductivity are additive and 
the stepped behaviour is lost at a sufficiently high voltage. 

2. The transmission coefficient 

In this section we briefly review our results on the transmission coefficient in the 
problem under discussion here [l]. A repulsive square barrier of height U, and width 
L separates the two half-spaces y < 0 and y > L. A magnetic field of intensity B acts 
within the barrier, in’the region 0 < y < L. A voltage V is applied across the barrier 
in such a way that a tunnelling current flows along the y axis towards +W. The energy 
is measured in units of taw, (w,  = eB/m*c is the cyclotron frequency) and the length 
in units of X = ( h / 2 m ’ w , ) ’ / 2 .  The vector potential of the uniform magnetic field in 
the Landau gauge has  the z component only; this allows the separation of the z , y ,  z 
coordinates. A description of the scattering process can thus be made in terms of an 
effective onedimensional potential u ( y ) .  The motion along the y axis is the motion 
of a particle of energy kz scattered by the potential 

U(Y) = 0 Y < O  
U(Y) = Z ( Y  - L )  - d k ,  - ko) + uo 
.(Y) = -L(% - k, )  

(1) 
Y 0 < Y 6 L 

y >  L.  

This potential is an explicit function of U,, L, k, and depends on Ve via 

ko = L / 4  - V e / L .  (2) 

The combined effect of the magnetic field and polarization amounts to a constant 
shift of the potential on the right hand side of the barrier, while the barrier height is 
reduced by a parabolic well. We note that at k ,  = to, u ( y )  becomes symmetric with 
respect to the centre of the barrier y = L / 2 .  Figure 1 shows u(y) as a function of y 
and k,. As k, increases, the minimum of the parabola shifts from the left edge to the 
right edge of the barrier. In other words, there is a particular angle of incidence at 
which quasi-levels can arise in the effective barrier for the motion along y. 

These quasi-levels are close to the harmonic oscillator levels of the non-truncated 
parabola: 

L2 1 
k a = U  --+n+-. 

Y 16 2 ( 3 )  

As k, moves away from k,, the shape of u(y) changes and the quasi-levels given by 
(3) vanish. 

All these features are found in the transmission coefficient 

4k.. k!. 
( 4 )  
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Figure 1. The effective potential U IY a function of y and k= for U, = 5, L = 8, 
Ve = 4. The heavy line refem to k, = ko = 1.5, for whim the effective potential is 
symmetric mound its centre. 

in which 

wl = y{(a, -yo)Y;(a, L - YO) - y i (a ,  -yo)Y{(a, L - yo) 
wz = yd., -yo)Yi(a, L - yo) - Yz(a, -yo)Y,'(a,L - yo) 
w3 = &'(a,-y,)Y2(a,L - yo) - Yz'(a,-yo)Yl(a,L - yo) 
w4 = yl(a,-yo)Yz(a,L - yo) - Y2(a, -yo)Y1(a,L - yo) 

where Y is the parabolic cylinder function [7], and Y' is its derivative with respect to 
the argument. In addition, we have defined 

yo = 2(k, + ve /L)  a = u0 - k2 - ~'V'/L' - ~ L , v ~ / L  
and 

k2 = k: + ki kh = ki + L(k, - L/4) + Ve. 

The transmission t depends both on k and k=: the scattering in the ( z ,y )  plane 
becomes directional in the presence of magnetic field. The dependence can be strong; 
this is seen in figures 2 (a) and 2 ( b )  where t is plotted as a function of k, and 
k 2 .  Here, the transmission peaks correspond to the quasi-levels. As the energy k2 of 
motion in the (z, y) plane increases, a resonance appears, reaches its maximum value 1 
at kz = k, and finally dies out. Other resonances can arise and disappear if the barrier 
is sufficiently wide. The higher the energy at which the resonance occurs, the larger 
its spread is. The transmission peaks run along some lines in the (k, kz) plane within 
the domain in which t > 0. When Ve < L2/4, this set is defined by the inequality 

k, < k, < k for k > k, with k, = --+ L/2. 

The full details can be found in our previous work [l]. 
Figures 3 (a) and 3 (a )  show the trajectories of the first two resonances for two 

different voltages V. We see that at higher voltages, the energies of the resonances 
are lower, while the trajectories tend to rotate towards the k axis. The last feature 
implies that on increasing the voltage, the second resonance arises before the first has 
died. The ranges of k values spanned by each rmnance do not overlap only when the 
polarization is sufficiently low. In what follows, we shall discuss the consequences of 
this on the tunnelling current. 
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Figure 2. The transmission coefficient t as II function of k. and kz for two  valuep of 
Ve: (6) V e  = 4 and (6) V e  = 8. The numbers above the peaks indicate k, d u e s .  

3. The tunnelling current and the differential conductivity 

Assuming that the barrier separates two reservoires of electrons the transmission eo- 
efficient of equation (4) gives the following tunnelling current I per unit area: 

m 

I =  2 1 0 / d E [ f ( E )  - f ( E -  V e ) ] / / d k z d / t , t ( m , k s )  (5) 
0 V 

where Io = ew,/8r?Xa is the reference density current and f is the Fermi distribution 
[SI. The integration domain 2, is the definition set o f t  as a function of k, and k,, 
whereas t in the set shown in figures 3 (a) and (b)  t depends on the variables ks and 
k = m. Our bias is of the order of the Fermi energy EF so that we are outside 
the range of linear response. Therefore, we do not use the Landauer formula giving 
the conductance in terms of the transmission coefficient [9]. Assuming that we are at 
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Figure 3. Trajectories of the resonances in the domain t > 0, in the k versus k. 
Plane. 

T = 0' K,  the inverse tunnelling current is zero for V e  > 0 and equation (5) becomes: 

in which 

Em = (EF - Ve) @(EF - V e )  

where 0 is the step Function. We note that, as a consequence of the reciprocity, the 
reduction to an equivalent one-dimensional scattering process makes sure that the 
inverse process has the same transmission coefficient [lo]. 

When the polarization is small, or the barriers are sufficiently wide, k, is positive. 
If EF < L$, the current is zero. For EF > ki  the energy of levels participating in the 
conduction lies between EF and E,. The current density is given by 

I 
- = +(ko, EF) - @(Em - k!)F(ko, E,,,) 
10 

(6) 

where 
& b 

3(k,, c )  = 4 1  dk k-J dk,t(k, k,) 
Lo ki 

and k, = L / 2  - m. 
If k, negative, the current is given by 

I - = F(0, Ep) - O(E,)3(0, E,) 
IO 

provided the definition of k, is changed to 

(7) 

k, = -k 

k, = LIZ - 
for k < lko[ 
for k 2 Ik,[, 
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However, the resonances play a role in the tunnelling process only when the barrier 
is sufficiently wide, so that hereafter we limit ourselves to the case k,  > 0 .  

To obtain the differential conductivity g, let us begin the evaluation 

where 

and 

The second term on the right-hand side of equation (8) vanishes when we evaluate 
aF/a(Ve)  at EF, so that we get 

in which go = e2/h8$Xz is the reference conductivity. 
The first contribution to  the conductivity is due to the change in the barrier 

penetration probability with V e ,  i.e., due to the terms conta.ining aG/a(Ve). The term 
containing ' yields an additional positive contribution because a higher bias increases 
the number of electron states that participate in tunnelling. The conductivity of a 
square barrier without the magnetic field is always the sum of such a term with the 
first terms [SI. On the contrary, when the magnetic field is turned on, the terms 
depending on E, may vanish if k, is sufficiently large. 

The derivative of 1 with respect to Ve  is given by equation (4) 

where 
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and 
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at q$$= Z W ~ ( - X ~ W {  - Z ~ W Z  - z Z W ~ )  + Zk:wz(-zow: - 2 ~ 1 / L  - xzwJ 

+ w i t  2 k ~ 2 w 3 ( - ~ O ~ j  - zIw4 - 2w1/L) + kiwi 
+ 2 k : k f w 4 ( - ~ 0 ~ :  - 2 ( ~ 3  t w,)/L) + ky/kb 

where 

z0 = u,/L 2, = 2(y;/4 + a)/L zz = 2 ( ( L  - u0)'/4 + a)/L. 

Here the primed wi indicate partial derivatives with respect to the index a. We note 
that &/a(Ve) has an integrable singularity at k, = k, because for this value of k,, 
k' = 0. The analytical calculation is needed to take care of this singularity. We obtain Y 

where 

and 

We thus obtain 

Let us use to  junctions like GaAs/AI,Gal-,As/GaAs to make a choice of the 
parameters. With an effective mass of 0.067 electron masses, we have 

180 hw, = I.iL?[Tesla) meV and X = ~- A 
B [Tesla] 

Devices like this have been studied by Gueret e f  al 1111 with barriers of heights 
U,, = 40 meV and 83 meV and widths L = 430.&, 250.&, with a maximum magnetic 
field of 4 Tesla. The doping of GaAs places the Fermi level 12 meV above the conduc- 
tion band minimum in each GaAs layer. A t  V = 5, 10 and 20mV, the junction bias 
is low. 

To emphasize the effect of the resonances on the current, we consider wider harriers 
with higher bias, and higher Fermi levels. Figure 4 shows the current as a function of 
E,  for various voltages. When the Fermi level is close to a resonance, a conduction 
channel opens and the current displays a sudden increase. This can be better seen 
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Figure 4. Cumnt density in units of lo ILS .a function of the Fermi em-. The 
nlrmbem st the curves indicate the Ire values, for WO = 5 and L = 8. 

Figure 5. The differantid conductivity in units of go as a function of the Fermi 
energy, for the same values of psrmeter j  M in figure 4. 

in the differential conductivity g that exhibits some smooth plateaus (figure 5). The 
resonances are located at approximately the points 

k2 - U, - V e l 2  + (Ve/L)' + n + (11) 

obtained by adding k: to ki of equation (3). For the chosen values of parameters, 
we have only two resonances. The second one is close to the top of the barrier. 
Equation (11) implies that as V e  increases, the resonances move down in energy and 
the opening of a channel occurs at a smaller 4. However, as noted before, when the 
bias becomes very large the effects of the resonances tend to overlap and the structures 
in the current are lost (see figure 6). 

A comparison with experiment could be better done by calculating I and g as 
functions of V e ,  at a fixed EF. In figure 7, log1 is plotted as a function of V e  at 
various EF, while figure 8 shows the corresponding behaviour of logg. The step due 
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Figure E. C m t  m a  functim of EF at a large bias (U, = 5, L = 8). Note that 
the steps have disappeared. 

Ye VP 

3.9 
3 7  
U 

U 
% 

t t - 5  - - 5  
m 
D 

m 
0 

- - ,... - , e - m - 
- 1 0  -10 

Figure 7. Iog(I / Io)  aaafuncticmof Vc (WO = 6, 
L = 8). The numbers alongside each mvc give 
the values of E p .  

Figure 8. I.&/go) ~ a f u c t i o n o f  V s  (U0 = 6, 
L = 8). The numbers alonsidc esch cwvc give 
the d u e s  of Em. 

to the first resonance is evident both in log1 and in 1069: for both quantities, the 
step amplitude is about two orders of magnitude. At  higher EF, the step appears a t  
a smaller bias, because .EF comes closer to the value of k2 given by equation (11) at 
lower V e .  

The previous discussion refers to a three-dimensional configuration. We expect 
that for a twedimensional system the resonances play a more relevant role beeause 
there is now no smoothing effect of the integration over k,. In two dimensions, all the 
former stuff is recovered by changing the definition of 7 in 

3 ( k o ,  <) = 4 dk k dk, t ( k ,  k,) 
ko 7 1  ki 

and taking Io = w,/4r2X as the reference current and go = e2/4rahX and the refer- 
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Figure 9. g/go as a function of V e  in two dimensions (U, = 5 ,  L Y 8) .  As in 
figures 7 and 8 ,  the numbers alongside the -MS are the values of Er. 

ence conductivity. We limit ourselves to showing in figure 9 the behaviour of g as a 
function of EF. The steps are sharper in two dimensions, but they tend to disappear 
again as the bias goes up. 

4. Summary 

We have investigated the tunnelling current flow across a thick, voltage biased square 
barrier in a transverse magnetic field. The magnetic field is confined within the barrier. 
A detailed study of the transmission coefficient shows that quasi-levels, resembling 
the Landau levels, appear when the barriers are sufficiently wide. These quasi-levels 
are found only for some values of the momentum on the plane perpendicular to the 
field and for its component parallel to the barrier. The barrier can be traversed 
with probability one, at certain directions of incidence, at energies lower than the 
maximum barrier height. Therefore, the magnetic field gives rise to a sort of dynamical 
constriction. We have shown that if a bias is applied to the barrier, the tunnelling 
current and the differential conductivity have a stepped behaviour, being functions of 
either the Fermi level or the applied voltage. We have performed the calculations both 
in three and in two dimensions. The steps are more evident in two dimensions. The 
deformation of the barrier due to the magnetic field produces effects that resemble 
those of an external potential causing a lateral constriction. 

We carried out measurements on low, thick semiconductor barriers like those in 
GaAs/A1,Gal-,As/GaAs heterostructures that have already been studied theoreti- 
cally and experimentally by Gueret et  ol [ll]. These authors measure the field de- 
pendence of the tunnelling current at different applied biases and compared it with a 
theoretical estimate. Their theory uses a WKB calculation of the transmission coeffi- 
cient with the magnetic field confined within the barrier. They find the experimental 
data agree with the theory. We have used the same model to perform a complete cal- 
culation of the transmission co&cient without any restriction imposed on the barrier 
parameters. The stepped behaviour of the tunnelling current conductivity is obtained 
for the barrier parameters whose values are clme to those studied by Gueret el a2. 
With a magnetic field of 3Tesla, the parameters of the barrier used in the figures are 
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U, = 25meV and L = 830 A. The corresponding values in [Ill are U, = 40value of 
E ,  = 12meV, the resonances cannot arise in their device. 

At very low temperatures, the phase coherence length can exceed the barrier width. 
In this case we have to  take into account the effect of the magnetic field in the region 
outside the barrier. In our opinion, a magnetic field leaking out of the barrier requires 
the barrier to be higher if structures are to be searched for in the transmission (see [l] 
p 2208). 

V Marigliano Ramaglia and F Ventriglia 
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